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ABSTRACT 

We determine the isomorphic classes of 6 or 8 dimensional semisimple Hopf 

algebras A over an algebraically closed field such that (dim A)I # 0. 

In troduct ion  

In [LR] Larson and Radford prove that a semisimple Hopf algebra A of odd 

dimension < 19 over a field k is commutative and cocommutative, so that,  if 

k is algebraically closed, A is isomorphic to the dual k G of the group-like Hopf 

algebra kG of an abelian group G. As easily seen, the conclusion holds true, if 

the dimension dim A is either 2 or 4. In this paper we determine the isomorphic 

classes of semisimple Hopf algebras A of dimension 6, 8 over an algebraically 

closed field k such that  (dimA)l  # 0. As a conclusion, such a Hopf algebra 

of dimension 6 is either commutative or cocommutative, while there is only one 

(up to isomorphisms) semisimple Hopf algebra of dimension 8 that  is neither 

commutative nor cocommutative. To show this, an important role is played by 

the biproduct B • H [R] and the bicrossed product K >~ H [H1, 2]. 

We work over a field k. Everything takes place over k. In particular | means 

@k. Let A be a finite dimensional Hopf algebra. The coalgebra structure and 

the antipode of A is written, as usual, by A,e, S o r  /kA,~A, SA. A* denotes the 

Hopf algebra Homk(A, k) of linear dual. If G is a finite group, kG denotes the 

group-like Hopf algebra of G and k G means (kG)*. Cn denotes the cyclic group 

of order n. 
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1. Semis imple  t t o p f  algebras of  dimension 6 

Throughout this section we suppose k is an algebraically closed field of charac- 

teristic ~ 2, 3. 

Let A be a semisimple Hopf algebra of dimension 6. 

LEMMA 1.1: 

(1) As an algebra A is isomorphic to either k •  x k (6 times) or k x k • M2( k ), 

where M2(k) denotes the algebra o/' 2 x 2 matrices. 

(2) A is cosemisimple and involutory. 

Proof  (1) This follows by counting dimensions. 

(2) By (1) there exists a 2-dimensional group-like Hopf subalgebra of A*. Hence 

Part (2) follows by applying [LR, Thms. 2.9, 2.11] to A*. | 

PROPOSITION 1.2: In A there exist a 2-dimensional group-like Hopf subalgebra 

H and a 3-dimensional left coideal subalgebra B such that the inclusion H ~-* A 

splits as a Hopf algebra map and that 

# : B |  # ( b |  

is an isomorphism. 

Proof." By (1.1.1) there is a Hopf algebra quotient r:  A ~ J such that dim J = 2. 

Let 

B = {a �9 A[ (1 |  o A(a) = a | r(1)}, 

the left coideal subalgebra of right J-coinvariants. By dualizing [MD, Thm. 3.5] 

we have that  there is a right J-colinear map r J -~ A such that  

B |  b | 1 6 2  

is an isomorphism. Hence dim B = 3. If we show ~r has a Hopf algebra section ~, 

then the proof is completed by setting H = z(J), since ~ can be chosen as r 

We apply (1.1.1) to A* to see that there is a 2-dimensional group-like Hopf 

subalgebra H C A. If H C B, then by the Nichols-Zoeller Theorem [NZ, Thin. 

7] B would be H-free, so d i m H  would divide dimB, a contradiction. Hence 

H ~ B and H ~ J via ~r. This means that 7r has a required section. | 

Let H, B be as in (1.2). By [R, part of Thm. 3(b)], B is a left H-module 

algebra with action 

h ---" b = E h o ) b S ( h ( 2 ) )  (h �9 H , b � 9  B),  
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where A(h) = ~ h(1) | h(2). We regard H (resp. B) as a quotient Hopf algebra 

(resp. a quotient coalgebra) of A via the isomorphism 

H ~- A /B+A (resp. B ~- A /AH +) 

induced from #, where B + = Ker(eA IB), H+ = Ker ell. We remark B is not nec- 

essarily a bialgebra. By JR, part of Thin. 3(b)], B is a left H-comodule coalgebra 

with coaction 

A : B - - - , H Q B ,  A(b)=(TrQ1)oAA(b) ,  

where 7r: A --~ H is the quotient map. We write 

~(b) = ~ b .  | b .  (b �9 B). 

Following Radford we write by B • H the vector space B | H given an algebra 

structure of smash product constructed from (H, B, ~ )  and a coalgebra structure 

of smash coproduct constructed from (H, B, A). Thus B • H has the following 

multiplication and comultiplication: 

(b • h)(b' • h') = ~ b ( h ( ~ )  ~ b') • h(:)h', 

~(b • h) = E(b(~)  • b(2).h(1)) | (b(2). • h(~)), 

where b, b ~ �9 B, h, h' �9 H. 

LEMMA 1.3 ([R, Thin. 3, Prop. 2(5)]): 

(1) B • H is a Hopfalgebra and p: B • H --* A is a Hopfalgebra isomorphism. 

(2) B has a convolution-inverse SB: B ~ B of the identity map. 

(3) The antipode S of B • H is given by 

S(b • h) = ~ ( 1  • S . ( b . h ) ) ( S . ( b . )  • 1), 

where b �9 B, h �9 H. 

LEMMA 1.4: 

(1) The algebra B is semisimple, so B ~- k • k • k. 

(2) The coalgebra B is cosemisimple. Hence B is spanned by group-likes. 

Proof (1) By [M, Prop. 2.10(1)] B is a Frobenius algebra. Hence Part (1) 

follows from the equivalence (1) r (7) in [M, Thin. 2.1]. 

(2) Apply Part (1) to A*. | 
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By (1.2), (1.4.2), we can write 

B = k l  (g kx+ r kx_ ,  H = k l  (~ kz,  

where x• z are group-likes. Note that by (1.3.2) x+ are units in B and S B ( X •  : 

x~ 1. We identify H = H* via the unique Hopf algebra isomorphism, which is 

induced from the pairing 

( z i , z  j)  = ( -1)  'j ( i , j  = 0,1) 

of the cyclic group < z > of order 2. Hence the dual basis ei of z i is given by 

(1.5) e, = 1(1 § ( -1) ' z )  (i = 0,1). 
L 

LEMMA 1.6: Suppose A is neither commutat ive  nor cocommutat ive .  

(1) z - - - - l = l , z ~ x + = x ~ : .  

(2) ;~(1) = 1 | 1, ~ ( x •  = eo | x •  + el | x~ .  

(3) x~  = ~_. 

P r o o f  ~ ,  A must not be trivial since, if ~ (resp.)~) is trivial, A is commutative 

(resp. cocommutative). 

(1) This follows since from the definition of ~ the action of z is a (non-trivial) 

coalgebra automorphism fixing 1. See also [R, Thm. 1]. 

(2) Since A is a unitary comeasuring, by the dual action any group-like in H* 

acts on B as a coalgebra automorphism fixing 1. Hence Part (2) follows. 

(3) Since A is involutory by (1.1.2), one has 

(1.7) Z S ( a ( 2 ) ) a ( 1 )  = e(a)l  (a e A). 

Take a = b x 1 (b e B) and compute the left-hand side in B x H using (1.3.3). 

Then, writing Am(b) = ~b(1) | b(2) (b E B), the comultiplication of B, one has 

Z S(b(2) B x 1)(b(1)xb(2)H) = Z ( 1  x SH(b(2)BH))(SB(b(2)BB)b(1 ) X b(2)H ) 

= E ( 1  X SH(b(2)H(2)))(SB(b(2)B)b(1) x b(2)H(1)) 

= (~-~ SH(b(2)H) ~ Sm(b(2)B)b(1)) x 1 (since S 2 = 1). 
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Hence by (1.7) it follows tha t  

b(2)H ~ SB(b(2)B)b(1) = e(b)l  

since SH = 1. Set b = x+,  then one has 

1 -1  1 + 5(x_ x+ - x+ lx_)  = 1 ,  

so x~  = x~_. | 

PROPOSITION 1.8: 

SEMISIMPLE HOPF ALGEBRAS 

(b e B) ,  

A is e i ther  c o m m u t a t i v e  or c o c o m m u t a t i v e .  

365 

Proof:  We suppose A is neither commuta t ive  nor cocommuta t ive  to show a 

contradiction.  

We have B = k x k x k by (1.4.1). Let e = (1, 0, 0) be the unique primitive 

idempotent  such tha t  e(e) = 1. Then  x+ = (1,c,c~), where c ,c  ~ E k are non- 

zero. Since the act ion of z on B is an algebra au tomorph ism fixing e, one has 

x_ = z ~ x+ = (1, c', c). By (1.6.3) it follows tha t  c 2 = c ~2. This implies tha t  

c = - c  ~, since it cannot  happen that  c = c ~ for x+ ~ x_ .  By definition of AB or 

[R, Thm.  1 (b)], one has 

(1.9) AB(bb ' )  : Z D(1)(D(2)H ~ b~l) ) | b(2)Bb~ 2) 

for b,b ~ E B. We set b - -  b ~ = x+ and compute  each side. W r i t e e  ~ = 1 - e  = 

(0, 1, 1), t = c 2. Then  the r ight-had side of (1.9) equals 

x+(eo ~ x+) | x+x+ + x+(ex ~ z+) | x_x+  

= e | (e + te') + te' | (e - te') 

= e @ e + te @ e ~ + te ~ @ e -  t2e ~ | e ~. 

On the other  hand, one sees 

1 - t  1 - t  
x~_ = t l  + T X +  + T X _ ,  

so tha t  
1 - t  1 - t  

AB(x  2 ) = t l @ I - t - T / + |  x _ |  

Multiply this by e ~ | e ~, then one has 

AB(x2_+)(e ' | e') = re ' |  e' + t (1 -- t ) f  @ f ,  

where f = (0, 1 , - 1 ) .  Hence for (1.9) it must  hold tha t  

t = - t  2, t ( 1 - t ) = 0 .  

This has no non-zero solution. Thus  a contradict ion is shown. II 
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THEOREM 1.10: 6-Dimensional semisimple Hopf algebras over an algebraically 

dosed field k of characteristic ~ 2, 3 consist of 3 isomorphic classes, which are 

represented by 

kC6, k| k e~, 

where ~3 denotes the symmetric group of degree 3. 

Proo~ These are not isomorphic to each other, as seen easily. These represent 

all isomorphic classes by (1.8) and since kC6 ~ k c~. | 

2. S e m i s imp le  H o p f  a lgebras  of  d i m e n s i o n  8 

In this section, except in (2.14), we suppose k is an algebraically closed field of 

characteristic 7 ~ 2. 

Let A be a semisimple Hopf algebra of dimension 8. 

LEMMA 2.1: 

(1) As an algebra A is isomorphic to either k x . . .  x k (8 times) or k x k x k x 

k • M2(k). 

(2) A is cosemisimple. 

Proof." Similar to the proof of (1.1). | 

By (2.1.2) A is a group-like Hopf algebra if it is cocommutative, and is the 

dual of such a Hopf algebra if commutative. 

We suppose in addition A is neither commutative nor cocommutative. Let 

G = G(A), the group-likes in A. Write K = kG and H = A/K+A,  where 

K + = Ker vg. 

LEMMA 2.2: 

(1) G has order 4. 

(2) The Hopf subalgebra K C A is normal, that is, K+A = AK +. Hence H is 

a quotient Hopf algebra. 

(3) H ~- kC2. 

(4) There is a unitary, co-unitary, left K-linear and right H-colinear 

isomorphism 

a : K |  
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Proof'. 

(1) Apply (2.1.1) to A*. 

(4) This follows by [Sch, Thm. 2.4 (2)] and [MD, Remark 1.8]. See also [MD, 

Prop. 3.2 (1)]. 

(2) It follows by (4) that  H is a 2-dimensional quotient right A-module of 

the semisimple algebra A. Hence H is a direct sum of H + -- Ker eH and some 

(two-sided) 1-dimensional ideal of A. This implies that H is a quotient algebra 

of A. 

(3) Since by (2.1.2) A is cosemisimple, so is H (see the proof of (1.4.2)). Hence 

Part (3) follows. 1 

The isomorphism a gives to K @ H a Hopf algebra structure of b icrossed  

p r o d u c t  [H1, Kapitel 5; H2, Sect. 3]. We write this Hopf algebra by K ~ H. 

Thus K v< H is as an algebra a crossed product of H over K with some data 

(action) ~ :  H | K --* K 

(cocycle) a: H | H ~ K, 

and as a coalgebra a crossed coproduct of K over H with some data 

(coaction) 

(dual cocycle) 

p:H---* H |  

O:H-"~ K |  

(In [H2] K ~< H is denoted alternatively by K#(o,e)H.) We remark ~ is 

co-unitary, p unitary and a normalized, since a is unitary and co-unitary. (We 

need not know all of the compatible conditions of these data. We have only to 

know at most the conditions i, ii in [P, Lemma 1.1] for group crossed products.) 

To find all A, which are neither commutative nor cocommutative as supposed, 

first we determine ~ ,  p. Note ~ ,  p are independent of choice of a (see [Si, Prop. 

2.9] in the graded case, and [H1, Satz 3.1.20; H2, Prop. 3.11] in the non-graded 

case). By (2.23) H is written as 

H = kl @ kz, 

where z is a group-like. 
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PROPOSITION 2.3: 

(1) p is trivial. 

(2) G ' ~  C2 x C2. 

(3) The action --" is determined by 

z - ~ l =  1, z ~ x = y ,  z - - - ~ y = x ,  z ~ x y = x y ,  

where x, y E K are group-likes r 1. 

Proof: 

(1) Note K* ~ kG, since G is abelian. Since p is a unitary comeasuring, 

p*: k C2 | kG ---* k C2 is a counitary measuring, so p* is trivial. Hence p is trivial. 

(2) By (1) the algebra A* (~ K* ~ H*) is isomorphic to the twisted group 

ring H*t[G] [P, p.4] of G over H*, in which the multiplication is twisted by the 

2-cocycle O*: G x G ~ H*. As easily seen, a twisted group ring of a cyclic group 

over a commutative ring is commutative. Hence for the non-commutativity of 

A*, G must not be cyclic. Hence Part (2) follows. 

(3) By the same reason as in (2), ~ must not be trivial, since A is isomorphic 

to the crossed product K * C2 [P, p.2] with data --~, a. To complete the proof, we 

claim the action of z is a Hopf algebra automorphism. In fact, this follows, since 

z acts on K ~- k a as an automorphism compatible with counit Cg and since the 

square of the action is identical by [P, Lemma 1.1 ii]. (This follows alternatively, 

since (H, K) together with ~ ,  p forms an abe l i an  m a t c h e d  pair  IT, Def. 1.1]. 

See [Si, Props, 2.5, 2.6], [H1, Satz 3.1.13; n2,  Prop. 3.8].) | 

Next we choose suitable 0. We use the notation in (2.3.3). Thus G = 

{1,x,y,  xy}. We regard K = k(x)  | k(y) = k (x) | k (~) = g* ,  so that  the 

dual basis eij of x~y j is given by 

= 4(1 + + (-1)Jy) ( i , j  = 0,1) 

(see the paragraph just above (1.6)). 

PROPOSITION 2.4: B y  a change of  the isomorphism a, 0 is chosen so that 

0(z)= E (-1)JkeiJ | ek'" 
O<i,j,kJ<_l 
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( N o t e  0 is uni tary ,  s ince  a is un i tary . )  

Proof'.  As remarked in the proof of (2.3.2), A* ~ H*t[G] via a*. A change 

of a* corresponds to a d i a g o n a l  c h a n g e  o f  bas i s  in H*t[G] [P, p. 3]. Note 

H* = k c2 = ke0 x kel, where ei is the dual basis of z i (i = 0,1). Since k 

is algebraically closed, there are units 5:, ~ of H*t[G] in the x-, y-component 

such that  5:2 = ~ 2  = 1. Set u =  ~-1~-1~5:. T h e n u  E H* a n d u  2 = 1, since 

flu 2 = 5:5:flu 2 = 5cfls:u = x y u x  = f15:5: = fl. For the non-commutat ivi ty of A*, u 

must not be 1. Furthermore u(1) = 1, since a* is co-unitary. Hence u = e0 - el. 

The 2-cocycle with respect to the basis 1, 5:, Y, 2~ is given by 

O * ( x i y J , x k y  t) = e0 + ( -1 )Jke l  (0 < i , j , k , l  <_ 1). 

Hence the Proposit ion follows. | 

Finally to show the existence of our A, we find such cocycles a that  make 

K w H a Hopf algebra in fact. Set 

v = z ) ,  

a unit in K (note a is determined by v, since a is normalized). It  holds by the 

cocycle condition [P, Lemma 1.1 i] that  

( 2 . 5 )  z ~ v = v ,  

where ~ is as given in (2.3.3). Conversely, if v is unit in K satisfying (2.5), 

K w H with ~ ,  a is at least a crossed product of H over K,  in particular a 

K-ring, that  is, an algebra given an algebra map K ~ K w H. As a K-ring, 

K w H is generated by z = 1 w z with relations 

(2.6) z 2 = v,  zc  = (z  ~ c ) z  (c �9 K ) .  

On the other hand, K w H is at least a coalgebra with structure A, e such that  

(2.7)  A ( z )  = O(z ) ( z  | z ) ,  ~(z)  = 1, 

where 0 is as given in (2.4), and that  the following diagrams commute: 

K w H  A , ( K w H ) |  K w H  ~ �9 k 

T l 1 
K /~K , K |  K s~ . k 
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either 

Proof." Write 

PROPOSITION 2.8: (Y together wi th  ~ ,  p, 0 as given in (2.3), (2.4) makes K t~ H 

a H o p f  algebra, if  and only i f  v equals 

VI = 1(1 + x + y - xy )  or v2 = 1 ( - 1  + x + y + xy) .  
L 

V -~ E Clj eli, 
O<_i,j<_l 

where clj E k. For v to be a unit satisfying (2.5), it should hold that 

(2.9) c~j r 0, c10 = col. 

Then K ~ H is a K-ring as cited above. Under (2.9), a makes K ~ H a 

bialgebra, if and only if the K-ring maps A, ~ determined by (2.7) are well- 

defined, where (K ~ H) | (K ~ H), k are regarded as K-rings via AK, ek. This 

is equivalent to the following four conditions: 

| | z )  = 

= 

O(z)(z | = AK(z  c)O(z)(z | z), 

6(Z)eK(C) = SK(Z ~ C)e(Z) (C �9 g ) .  

The 3rd and 4th conditions hold automatically, since z acts on K as a coalgebra 

automorphism. The 1st and 2nd conditions hold, if and if only, respectively, 

f (1-)~+~%qckt = cvq, (2.10) 
whenever i + k - p, j + l - q (rood2); 

(2.11) coo = 1. 

We solve (2.9)-(2.11) to have 

Coo = 1, clo = col = +1, Cll = -1 .  

Describing v by means of x, y, we have vl, v2 in the Proposition. 

It is shown in [H1, Satz 5.1; H2, Prop. 3.13] that a bialgebra which is the 

bicrossed product of two Hopf algebras is a Hopf algebra. (For an explicit de- 

scription of the antipode, see (2.13) below.) Hence the Proposition follows. | 

Denote by A (resp. A ~) the Hopf algebra obtained by taking vl (resp. v2) 

together with ~ ,  p, 0 as in (2.8). These are semisimple, since by [DT, Thm. 

3.14] a crossed product of a semisimple Hopf algebra over a semisimple algebra 

is semisimple. 
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LEMMA 2 . 1 2 : . 4  -~ .4 '  as Hopfalgebras.  

Proof." T h e  K- r ing  m a p  z ~ yz,  A ~ A '  gives a Hopf  algebra isomorphism.  

| 

Thus  we obta in  the following: 

THEOREM 2.13: 8-Dimensional semisimple Hop[  algebras  over an algebraically 

closed field k o f  characteristic r 2 consist o f  8 isomorphic classes, which are 

represented by 

k(C2 • C2 • C~), k(C2 • C4), kCs, 

kD,  k D, kQ, k Q, A ,  

where D = C4 ~ C2 is the dihedral group and Q is the quaternion group. A m o n g  

these, .4 is the unique one that  is neither commuta t i ve  nor cocommutat ive ,  and 

is generated as an algebra  by x, y, z with relations 

= y 2 = l ,  z 2 =  ~ ( l + x + y - x y ) ,  y x = x y ,  z x = y z ,  z y = x z ;  X 2 

the coalgebra structure A ,  ~ and the ant ipode S are  determined by  

A ( x )  = x | x, A ( y )  = y O y, c (x)  = c(y)  = l, 

A ( z ) =  ~ ( l | 1 7 4 1 7 4 1 7 4 1 7 4  ~ ( z ) = L  

S ( x )  = x, S (y )  = y, S ( z )  = z. 

(We  remark  that  S is an algebra ant i -automorphism and that  S r 1, S 2 = 1.) 

REMARK 2.14: Suppose k is a field of characteris t ic  # 2 which is not necessarily 

algebraically closed. 

(1) A is (2.13) can be defined over k. ,4* is presented as follows: ,4* is genera ted  

by c, s, h wi th  relat ions 

c 2 - s 2 = 1, sc = cs = 0, h 2 = 1, ch = hc, sh = - h s ,  

given the s t ruc tures  de termined by 

A ( c ) = c | 1 7 4  6(c) = 1, 

A(s)=c|174 c(s)=O, 
A(h)  = h | h + hs 2 | h(1 - c - s), r = 1, 

S(c)  = c, S ( s )  = s, S (h )  = h(s  2 + s + l) .  
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(2) Suppose k contains an 8th primitive root ( of 1 , and write x/Z-[ = 42, a 

square root of -1 .  Set 

w = (e0o 4- @10 + ~-leol + ~ - ] e l l ) Z .  

Then ,4 is presented by generators x ,  y ,  w ,  where the expressions containing 

z are replaced by 
W 2 ~-- 1 ,  W X  = y W ,  

(3) A* is semisimple, and neither commutative nor cocommutative. Hence if k 

is algebraically closed, it should hold by (2.13) that .4 ~ ,4*. In fact 

x H c + x / - - - f s ,  y ~ c -  x / -2- f s ,  w H h 

gives an isomorphism. But if x/Z-[ ~ k, these are not isomorphic, since the 

group-likes G ( , 4 * )  in ,4* consist of two elements 1, c 2 + s 2. 

P r o o f  (1) We know ,4* = K* ~4 H* with data dual to ,4's, where K *  = k ( x ,  y } ,  

H *  = k ( z } .  Therefore ,4* is presented by generators x, y, z with relations 

2;2 : y2 ~_ z 2 = 1, z x  = x z ,  z y  = y z ,  y x  = x y z  

given the structures 

A ( x )  = ~e0  | x + x e :  | ~, ~(~) = 1, 

A ( y )  = yeo  | y 4- y e l  | x ,  e ( y )  = l ,  

A ( z )  = z | z,  ~(z)  = 1, 

S ( x ) = x e o 4 - y e l ,  S ( y ) = y e o 4 - x e l ,  S ( z ) = z ,  

where ei is as given in (1.5). Set 

c =- x y e o ,  s =- x y e l ,  h = x .  

Then Part (1) follows. 

(2), (3) Straightforward. 

NOTE ADDED IN REVISION. Reading the original version of this paper, Dr. T. 

Masuda and Dr. Y. Sekine informed me that  G.I. Kac had discovered in the 1960's 

a non-commutative, non-cocommutative semisimple Hopf algebra of dimension 

8. It follows by the uniqueness in Theorem 2.13 that this Hopf algebra of Kac's 

is isomorphic to our ,4. 
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